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Abstract

Of interest here is the problem of fitting a curve or surface to given data by minimizing
some norm of the distances from the points to the surface. These distances may be
measured orthogonally to the surface, giving orthogonal distance regression, and for this
problem, the least squares norm has attracted most attention. Here we will look at two
other important criteria, the 11 norm and the Chebysbev norm. The former is of value
when the data contain wild points, the latter in the context of accept/reject criteria.
There are however circumstances when it is not appropriate to force the distances to
be orthogonal, and two possibilities of this are also considered. The first arises when
the distances are aligned with certain fixed directions, and the second when angular
information is available about the measured data points. For the least squares norm, we
will consider some algorithmic developments for these problems.

1 Introduction

Of interest here is the problem of fitting to given data a curve or surface which depends on
a vector a E Rn of parameters. The underlying approach is such that (1) a point on the
surface is associated with each data point, (2) the fit of the surface is measured by a norm
of the vector whose components are the distances between each pair of corresponding
points, (3) the (correct) Gauss-Newton steps in a are used as a basis for minimizing
this norm. The distances may be orthogonal to the surface, giving orthogonal distance
regression (ODR), or may be forced to satisfy some other criterion which makes them
non-orthogonal in general. We consider both situations.

For the ODR problem, most attention has been given to the least squares norm (eg
[5], [8], [9], [16], [17], [22]). Here we will look at two other important criteria, the 11 norm
and the Chebyshev norm. The former is of value when the data contain wild points, the
latter in the context of accept/reject criteria. For the non-orthogonal distance problem
we will restrict attention to the least squares case.

In terms of a vector a E R' of parameters, the curve or surface may be defined in
two ways, (a) parametrically, when a point x on the surface is given by

x = x(a, t),
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with t the parameters whose values define the particular point, or (b) implicitly, when
the surface is defined by the set of points x satisfying the scalar equation

f(a, x) = 0.

It is also assumed here that the expressions required in these representations are differ-
entiable functions of their parameters.

2 l and l1, ODR
Consider first the 11 case. Then the problem is

m

minimize lixi - zi(a)J,

where the points zi(a) are the nearest points to xi on the surface defined by a, and
where we will assume throughout that unadorned norms are Euclidean norms. Let

6i = l1xi - zi(a)I1, i = m.

Then the problem is effectively now defined in terms of the vector a alone. It is easy to
to calculate the correct Gauss-Newton step in a, which minimizes

116 + VaSd lli
with respect to d. Now

Vai (-xi - zi(a))TVazi(a), 6i 3 0,

so that there are potential problems if any 6i - 0. Given the nature of the 11 prob-
lem, we cannot exclude that possibility. In fact although 3 is not a smooth function,
because derivative discontinuities only occur at zero values it is a strong semi-smooth
function, as defined in [12]. Ideas from smooth analysis and from strong semi-smooth
analysis as developed in [11] can then be combined to give a local convergence analysis
for the present problem. Fast local convergence for the usual smooth problem relies on
strong uniqueness [4]; for the 11 norm, this can be interpreted in terms of a requirement
that the sequence of solutions dk is "well-behaved" in a certain sense [1]. An analogous
requirement can be stated here.

Let the current approximation be ak and let jk denote the Jacobian matrix Va6(ak),
assuming this exists. Then the Gauss-Newton step dk minimzes

116(ak) + jkdji.

It is well known (see for example [18]) that if jk has full rank then there always exists
a solution dk and an index set Zk containing n indices such that

6 3(ak) + eTJkdk = 0, i E Zk,

where ej is the ith coordinate vector. Let a* be a limit point of the iteration. Then for
ak close enough to a*, assume that jk exists and

(i) 6(ak) + Jkdk has exactly n zeros, corresponding to an index set Zk,
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(ii) Zk = Z*, independent of k,
(iii) the n x n matrices whose rows are eTJk, i E Z*, are bounded away from singularity.

In practice these conditions ensure that dk is unique, and there is no redundancy in the
zero components. An analysis is given in [21] for both parametric and implicit fitting.
The main result is the following.

Theorem 2.1 [21] Let the Gauss-Newton method produce a sequence ak --+ a*, where
6(ak) has no zero components, and let (i)-(iii) above hold. In the parametric case, assume
that for all i E Z*, there exists a unique unit normal vector ni (up to change of sign) at
the point xi on the surface defined by a*. Then the (undamped) Gauss-Newton method
converges to a* at a second order rate.

The significance of this result is that, for both parametric and implicit fitting, any
3i tending to zero is not by itself necessarily an obstacle to good performance of the
Gauss-Newton method in the 11 case. What is more significant is the possibility of very
slow convergence and this has more to do with the number of those zero components
of 3 at a limit point, rather than just their presence. A fundamental requirement for
the condition (ii) is that the number of zero components of 6(a*) is n. Of course, this
condition is a rather special one, and for many problems, will not be satisfied. There is
slow (possibly very slow) convergence associated with this case.

Turning now to the 1,, problem, this can be stated

minimize max Ixi - zi(a)II,

with zi(a) defined as before. Again 6i = Ixi - z2(a)lI is not a smooth function, but a
solution normally occurs in a region where 3 is smooth. Therefore the problem does not
differ significantly from the usual nonlinear minimax problem: the main requirement for
fast local convergence is that at a limit point the norm is attained at n + 1 indices [4].

Two simple examples in 2 dimensions are given by way of illustration. A standard
line search is incorporated to force global convergence, although trust region methods
are a popular alternative. Indeed, local convergence is the main concern here, and we
have not begun to address important issues to do with the development of robust general
purpose algorithms.

Example 2.2 Consider the Sphth data set [13] (m = 7), and consider fitting an ellipse
defined implicitly, using the l1 and 11 norms. The solutions are illustrated in Figure 1,
where the dashed ellipse and dashed lines are the l1 solution and corresponding ortho-
gonal directions, and the solid ellipse and solid lines are the I1 solution and corresponding
directions. Both ellipses were obtained using the Gauss-Newton method starting from
the circle centre (5,5), radius 2, in 4 and 5 iterations respectively for 5 figure accuracy.

Example 2.3 Consider next the GGS data set [6], which has m = 8. Similar fits to
those for Example 1 are shown in Figure 2. Again the Gauss-Newton method was used
starting from the circle centre (5,5), radius 2, to give convergence in 6 iterations (l1)
and 7 iterations (11).

For both these examples n = 5, and favourable conditions hold so that there is
quadratic convergence both in the ll and l cases. Otherwise, the key to recovering fast
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FIG. 1. 11 and ls fits to Spiith data set.

local convergence in the 11 case is to identify Z* and to reformulate the problem locally
as

miniimze 6 Ifx-z(a)I subject to x- z((a 0, i6 EZ(. (2.1)
iCZ*

A similar remedy in the lo• case is as follows. For a limit point a* of the iteration, let

I* -- {i: 6(a*) = max3i(a*)}.

Then if we can identify 1*, a* solves, for any j E 1*:

minimize 63 (a) subject to 3i(a) - 3j(a) -- 0, i E I*\j.

Example 2.4 Fitting an l ODR line in R 3 to 100 random data points (equivalent
to finding the circumscribing cylinder of smallest radius) gives slow convergence of the
basic method, because I*1 = 3 and n = 4. But once we identify P* = {4, 42, 58}, only 5
iterations of the NAG Fortran subroutine E04UCF are required for 6 figure accuracy.

3 Non-orthogonal 12 distance regression

3.1 Using fixed directions

Suppose that the data come from sampling the surface of a manufactured part, using
a coordinate measuring machine with a touch probe. It has been argued by Hulting
[10] that choosing the directions to be the known probe directions vi (relative to a
fixed frame of reference) not only makes explicit use of the measurement design, but
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FIG. 2. 11 and l1, fits to GGS data set.

also complies with traditional fixed-regressor assumptions (enabling standard inference
theory to apply).

Let xi, i = 1,... ,m as usual be the data points, and let zi be the corresponding
points on the surface reached by travelling along the lines from xi in the direction vi.
Then we require to minimize 11511 where

6i = IIxi - zi(a)JI, i = 1,...

with zi(a) defined by
zi(a) -- xi = 6ivi, i = 1,.. ,m,

where vi satisfying vTvi = 1 is given for each i. In case of ambiguity, the smallest value
of 6i is chosen. The basic idea in efficient algorithmic development is again to treat the
problem as one in a alone, which can be solved as before by the Gauss-Newton method
(or variants). Let a be given. Then for each point xi, the point where the line through
xi in the direction vi first cuts the surface can be obtained (this calculation replaces the
"footpoint problem" of calculating zi(a) as the point on the surface in the orthogonal
distance problem), giving 6i as a function of a. Methods based on Gauss-Newton steps
are developed for the parametric case in [19], [20], and for the implicit case in [7].

By way of illustration, the 2 data sets previously considered in Examples 1 and 2
are used to fit ellipses defined implicitly with a particular choice of directions vi. The
initial (circles) and final ellipses (together with the data points and the directions vi)
are shown in Figures 3 and 4. The calculations needed respectively 19 and 17 iterations,
reflecting the fact that, unlike the 11 and l1 cases, the convergence rate is linear.



Some problems in distance regression 299

10

4

-6 -4 -2 0 2 4 6 8 10 12 14

FIG. 3. 12 fit to Spiith data set: fixed vi.

-2 0 2 4 6 8 10 12

FIG. 4. 12 fit to GGS data set: fixed vi.

3.2 Using angular information

Berman and Griffiths [2, 3] consider fitting a circle when angular differences between
successively measured data points are known, with applications in physics and archae-
ology. This fitting problem has been extended to the case of ellipses and ellipsoids by
Spdth in [14, 15] and it is this kind of problem which is of interest here. The methods
of [14] and [15] are based on the alternating algorithm, and while this can be perhaps
surprisingly effective (particularly with a reparameterization of the problem), we con-
sider here a correct separated Gauss-Newton method similar to that used before. In
addition to (usually) better local convergence properties, standard step-length control
can be incorporated.
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To illustrate, consider fitting an ellipse in general position. It is convenient to do this
by allowing the data to rotate, and fitting to those an ellipse in normal position, aligned
with the axes. Let (x, y) denote the components of x. Then we work with the data

xi() = xi cos 0 + yj sin , yi(0) -xi sine + yj cost,

for i = 1, . .. ,m, where ¢ is an unknown parameter. Therefore we require to minimize,
with respect to the 6 parameters a, b,p, q, a, ¢, the function

m

(xi(0) -a- pcos(a + ti))2 + (yi(j) - b - q sin(a + t,)) 2},

where the numbers tj are given. Because (a + ti+1 ) - (a + ti) = tj~l - ti, for each i, we
can interpret this as saying say that the angular differences are known, with a degree of
freedom given by the parameter a. Note that at a solution to this problem, the directions
between pairs of points (x.(O),yj(¢)) and the corresponding points on the ellipse will
not generally be orthogonal to the ellipse.

Differentiating the above expression with respect to a, p, b, q gives

A [ a] = cl, (3.1)

where
m • 1cos(a + ti) cl Ern1 Xi (0)

A1  [ ZiLcos(a+ti) E',icos(a+ti) ],c= xi()cos(+ti)

A2 [b]=C2, (3.2)4 q

where
M E' 1 sin(a + ti) -=

A 2 = [ l Z~ sin(a + ti) E', sin(E'"+ t1) ()iI sinc(a + ti)

Then (3.1) and (3.2) give (a, b, p, q) as functions of a and 0, provided that A1 and A2
are nonsingular: this will be assumed. For given a and 0, we can therefore define the
function to be minimized as

F(a, 0) = 116(a, ¢)11,

where

6i = IUw•iI, i = 1, ... , 7n, (3.3)

with
wi = (xi(¢) - a - pcos (a + ti), yi(j) - b - q sin(a + ti))T,

and with a, b,p, q defined by (3.1) and (3.2). Then we can apply the Gauss-Newton
method to the minimization of F(a, 0). The basic step d = (6a, 6 0)T is given by finding

min 116 + JdI, (3.4)
dER

2
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where J E R"' 2 has ith row given by

Now
wT

V.,i (a, ) .(V.,±wi + (Va,p,b,qWi)M), 6 #0, (3.5)

where
a

M - V4 C) eR
4 ×R2

.

q

It is easy to compute M from (3.1) and (3.2) which can be interpreted as identities in
a and 0. The details are omitted, but all the linear systems use just the matrices A1
and A2 , and apart from the solution of (3.4) (a least squares problem in two variables),
there remains only evaluation of expressions.

Example 3.1 Consider Example 1 from [14], which has m = 11. Starting from a
0, 0 = 0, 15 iterations are required to satisfy the stopping criterion IldiK < 0.001.
The resulting value of I16112 is 7.7211, with a = 2.1253, b = -0.1700, p = 4.1281, q =

3.0931, a = 13.2348', ¢ = 34.7309'.

Example 3.2 Next consider Example 2 from [14], which has m = 8. Again starting
from a = 0, ¢ 0, 9 iterations are required to satisfy the stopping criterion I~dIJo <
0.001. The resulting value of J11512 is 4.4946, with a = 4.3608, b = 1.9537, p = 5.3717, q =
3.3704, a = -0.6215', € = 26.3889'.

4 Conclusions

We have examined some aspects of fitting curves and surfaces to given data. The un-
derlying criterion involves associating with each data point a point on the surface and
minimizing some norm of the vector whose components are the distances between pairs
of points. The distances can be orthogonal to the surface, or fixed in some other way. But
the problems have in common that methods based on separated Gauss-Newton steps can
readily be developed.
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